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On exterior variational calculusi 
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Paulo, SP, Brazil 

Received 23 March 1987. in final form 28 October 1987 

Abstract. Exterior variational calculus is introduced through examples in field theory. A 
very simple technique is provided to decide whether or not Lagrangians exist for given 
sets of field equations and, when they do, to find them. Some applications are made to 
gauge and chiral fields. 

1. Introduction 

Exterior differential calculus has been devised as a means to compactify notation, 
reducing most expressions of tensor analysis to their essentials. In recent years the 
language of differential forms has become a matter of necessity for theoreticians 
working in many branches of physics. On the other hand, functional techniques and 
the closely related variational methods have long been common lore but a systematised 
exterior functional calculus seems to be missing. Our objective here is to introduce 
an exterior variational calculus in perfect analogy with differential calculus on finite 
dimensional manifolds. Previous attempts in this direction (Santilli 1977) have estab- 
lished common points between variational and exterior calculus but some important 
remaining differences (Anderson and Duchamp 1980) hindered the use of the full 
power and transparency of the method. The calculus presented below is a complete 
analogue to exterior differential calculus. Although it may have a sound mathematical 
basis, it will be introduced here in a purely descriptive way, as a practical device 
leading quickly to results. In a rather diffuse way, special cases of it have been applied 
to the study of some specific problems, such as the BRST symmetry (Stora 1984, Zumino 
er a1 1984, Faddeev and Shatashvilli 1984) and anomalies (Bonora and Cotta-Ramusino 
1983), but its scope is far more general. 

This paper is concerned only with ‘local’ aspects, i.e. properties valid only in some 
open set in the field functional space. It is our hope, just as happened with differential 
forms on finite-dimensional manifolds, that functional forms may become of great 
help in the search for topological functional characteristics. We do  not recall here the 
results of differential calculus. We simply state those which are necessary directly in 
terms of functional forms, since they are the same. The basic ideas and definitions 
are presented in 0 2. The inverse problem of variational calculus is broached in 0 3, 
where the non-existence of Lagrangians for the Navier-Stokes and the Korteweg-de 
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Vries equations is demonstrated in a few lines. The ensuing paragraph shows how to 
obtain Lagrangians in a systematic way, with examples in non-linear and non-poly- 
nomial cases. Applications to gauge theories, including the Wess-Zumino consistency 
condition and the BRST symmetry, are made in $ 5. We finish with a short discussion 
of some questions involving chiral fields. 

2. Preliminary remarks 

Let us consider a set of fields cp = ( c p ' ,  q 2 , .  . . , c p N  ) which we suppose to be defined 
on the spacetime M to fix the ideas, although all that follows is easily adapted to fields 
defined on other manifolds as some examples will make clear. Each kind of field 
defines a bundle with M as base space and we shall take local coordinates (x,, cp") 
on the bundle. The basic idea is to use the x and the cp as independent coordinates 
(Anderson and Duchamp 1980). If Y[cp(x)] is a Lagrangian density, its total variation 
under small changes of these coordinates is 

S , 2 = S 2 + d 2 = ( S a 2 ) S c p a + ( a , 2 )  dx, (2.1) 
where S a 2  is a shorthand for ( S 2 / S c p a )  and Scp" is the purely functional variation of 
cp'. In the spirit of field theory, 2 is supposed to have no explicit dependence on x', 
so that a , 2  = (Sa2)d,cp". Of course, for the part concerned with variations in spacetime 
(i.e. in the arguments of the fields) we have 

d22=$(aha ,2-a ,a ,2)  dxA ~ d x ,  = O .  (2.2) 

6 ' ~ = = ( 6 a S b 2 - s h S a ~ ) S c p O u  F\ S q b  =o. (2.3) 

This is precisely one of the results of exterior calculus which we wish to extend to the 
cp space. It is natural for the 6 operator: 

Here &pa A Scp' is the antisymmetrisation of the product Scp"Gcpb, i.e. just the exterior 
product of the differentials of the coordinates c p a  and c p b .  In order to enforce the 
boundary-has-no-boundary property for the total variation, we must impose 

but 
S $ 2  = ( a d +  d8)Y = 89" A Sa(a ,2  dx,) + dx, A a,( S,2Scpa) 

so that (2.4) requires 

6: = (6  + d)2 = Sd+dS = 0 (2.4) 

= ( s a a , 2 ' - a , S a 2 ) G c p a  A dx' 

Saa$ = a,Sa2. (2.5) 
The anticommutation of S and d implies the commutation of the respective derivatives. 
This is no novelty, of course, as it happens normally in differential calculus when we 
separate a manifold into two subspaces. The total variation does not commute with 
spacetime transformations 

[a,, &If= (d ,~x"  ) a d  (2.6) 
but the purely functional variation does. We shall from now on consider only purely 
functional variations. Furthermore, instead of densities as in the example above, we 
shall consider only objects integrated on spacetime, such as the action functional 

(2.7) 
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For facility of language, we shall sometimes interchange the terms 'Lagrangian' and 
'action'. Differentiating the cxpression above, 

SS[cp] = d4xS2[cp(x)] = d4x{Sa2[cp(x)]}Scp"(x). I I (2.8) 

The FrCchet differential of a functional F[cp] at a point cp of the functional space and 
along a direction ~ ( x )  in that space is defined by 

(2.9) 

F'[cp] is a linear operator on ~ ( x ) ,  and F'[77] = 0 is a linearised version of the equation 
F[cp] = 0. The integrand (2.8) is the FrCchet derivative of 2 [ p ]  along 7 = Scp. The 
presence of the integration and (2 .5)  justify the usual procedures of naive variational 
calculus, such as 'taking variations (in reality, functional derivatives and not diff eren- 
tials) inside the common derivatives' which, allied to an indiscriminate use of integra- 
tions by parts (supposing convenient boundary conditions), lends it a great simplicity. 

The vanishing of the expression between { } in (2.8) gives the field equations, 
S,2'[cp(x)] = 0. Given a set of field equations E,[cp(x)] = 0, we shall call its Euler form 
the expression 

E[cpl= d4x E,[cp(x)l~cp"(x). (2.10) I 
The exterior functional (or variational) differential of such an expression will be defined 
as 

SE[cp]= d4x8E,[cp(x)]~ Scp"(x) I 
=' J" d4x{SbEa[(p(x)I-SaE,[cp(x)I}Scpb(x) A &O"(X). (2.11) 

The differential of (2.8) is immediately found to be zero, S2S[q] = O .  In analogy to 
the usual 1-forms, 2-forms, etc, of exterior calculus, we shall denote the corresponding 
functional differentials such as (2.10) and (2.11) as 1-Forms, 2-Forms, etc. A p-Form 
will be an object like 

2 

z[cp]=- d 4 x Z a i a ,  .,p[(p(x)]Scp"I(x) A 8cpa2(x) A . .  . A  Scp"p(x) (2.12) 

the exterior product signs indicating a total antisymmetrisation quite analogous to that 
of differential calculus. A new feature in Forms is that their components in a 'coframe' 
{ S q " }  as above may be operators, in reality acting on the first S q "  at the right. Take, 
for instance, the Euler Form for a free scalar field 

E[cpl= d4x[C1.+mm2]cp,(x)Scp"(x). 

P! ' I  

I 
Its differential will be 

SE[cp]= d4~{S, , [U,+m2]}Scp"(x)~ Gcpb(x)=O I (2.13) 
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because the component {S,),[o, + m ' ] }  is symmetric. The vanishing of the U term 
may be seen, after integration by parts, as a consequence of S d , c p " ( x )  A S#cp,(x) = 0. 
The use of operator components provides an automatic extension to the larger space 
also containing the field derivatives, avoiding the explicit use of jet bundles of rigorous 
variational calculus (Anderson and Duchamp 1980). 

The indices ( a , )  in (2.12) are, of course, summed over as they are repeated. To 
simplify notation, we shall from now on extend this Einstein convention to the spacetime 
variable x and omit the integration sign, as well as the ( p ! )  factor. Its implicit presence 
should, however, be kept in mind, as integration by parts will frequently be used. In 
reality, to make expressions shorter, we shall frequently omit the arguments. Equation 
(2.10), for example, will be written simply as 

E = E,Scp". (2.14) 

Finally, we shall borrow freely from the language of differential calculus. A Form W 
satisfying 8 W = 0 will be said to be a closed Form and a Form W which is a variational 
differential of another, W = SZ, will be an exact Form. 

3. The existence of Lagrangians 

The question of the existence of a Lagrangian for a given set of field equations with 
Euler Form E can then be put in a simple way: is there a 0-Form S as in ( 2 . 7 )  such 
that E = SS? Or, when is E locally an exact Form? 

Consider expression (2.11) where the E , [ c p ( x ) ]  are densities just as 9 [ ( p ( x ) ]  and 
the differentials appearing are FrCchet differentials 

The Helmholtz-Vainberg necessary and sufficient condition (Vainberg 1964) for 
the existence of a local Lagrangian is that, in a ball around cp in the functional space, 

E " E L [ T ]  = V ' E ~ [ E ]  (3.2) 

for any two increments 7, E.  In our notation, with increments E' along c p a  and v b  
along cpb,  (3.1) tells us that this is equivalent to &E, = S,Eb, or from (2.11) that 

SE = O .  (3.3) 

We have here a variational analogue of the PoincarC inverse lemma of differential 
calculus: for a Form to be locally exact, it is necessary and sufficient that it be closed. 
In this case, E,  = 8,Lf for some X There are, however, equations of physical interest 
which are not related to an action principle in terms of the fundamental physical fields 
involved. 

Let us look at the notorious case of the Navier-Stokes equation 

pvJaJv '+a 'p -pa 'aJv '  = O  (3.4) 

d J V J  = 0 (3.5) 

which together with 

describes the behaviour of an incompressible fluid of density p and coefficient of 
viscosity p. The physical fields of interest are the velocity components v J  and the 
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pressure p .  The pressure is the obvious candidate for the Lagrange multiplier of the 
incompressibility condition (3.5), so that we write the Euler Form as 

(3.6) E = - ( p ~ , d ' ~ ,  +d,p - p d , d ' ~ , ) S ~ '  + (d,v')Sp 
with the relative sign conveniently chosen. A direct calculation gives 

S E = - S ( p U , d ' V , )  A 8 U r - ( d , 8 p )  A 8 V ' + p ( d , d ' 8 U t )  A 8Ut+(d,6U')  A 8p  

= - 6 ( p U , d ' U , S V ' )  + Sp A ( d , s V ' )  - p(d'&J,) A ( d , s U ' )  + (d,SV') A 8p  

= -S(pv,d'v,Sv')  # 0. (3.7) 

The 'offending' non-Lagrangian term can be immediately identified as pqd'u , .  The 
power of exterior variational calculus is well illustrated in the above few lines, which 
summarise the large amount of information necessary to arrive at this result (Finlayson 
1972). Another example of interest is the Korteweg-de Vries equation, for which the 
Euler Form is 

E = ( u r + u u , + u , , , ) 6 u  (3.8) 

the indices indicating derivatives with respect to t and x. That no Lagrangian exists 
may be seen from the simple consideration of the first term in SE, 6ur A 6u, which is 
non-vanishing and cannot be compensated by any other contribution. This example 
may illustrate an  important point: the existence or not of a Lagrangian depends on 
which field is chosen as the fundamental physical field. Above the chosen field was 
supposed to be U .  In terms of U ,  no Lagrangian exists. However, a Lagrangian does 
exist in terms of p if we put U = cpx, as E becomes the closed Form 

E = ( a x  + (Px(Pxx + ( P x n x ) +  (3.9) 

When the choice of the fundamental physical field is determined by some other reason, 
as in quantum field theory, it is of no great help that a Lagrangian may be found by 
some clever change of variable. 

There is an  obvious ambiguity in writing the Euler Form for a set of two or more 
field equations, as multiplying each equation by some factor leads to an  equivalent 
set. Such a freedom may be used to choose an exact Euler Form and to give the 
Lagrangian a correct sign. 

4. Finding Lagrangians 

Differential forms have a very convenient local expression which embodies a more 
complete version of the Poincare inverse lemma (Warner 1983, Lovelock and Rund 
1975, Nash and Sen 1983). We shall state i t  already adapted to Forms. Let us begin 
by defining the operation T on the p-Form Z. If 

z[Cp] = z,,,, .,,,[Cp]6~"l A 6Va2  A .  . . A 8 Q " P  (4.1) 

then TZ is defined as the ( p  - 1)-Form given by 

T [ Z ]  = 1 (-l) '- '  
P 

d t  t P - 1 Z , l , 2 , , , , , [ t p ] ~ a ~ S p a ~  A , .  , A  S ( P " ~ - '  A S ( P ' ) + ~  A . .  . A  6p'r. 

(4.2) 
/ = I  I,' 



1334 R Aldrouandi and R A Kraenkel 

Under the integration sign, the fields cp" appearing in the argument of Z O I , ,  +, are 
multiplied by the variable t .  As t goes from 0 to 1, the field values are continuously 
deformed from 0 to p". This is a homotopy operation (Nash and Sen 1983) in cp space 
and T is sometimes called 'homotopy operator'. A more general homotopy cp, = 
tcp + (1 - t ) c p o ,  with (co# 0 may be used, but without real gain of generality. The 
important point is that the cp space is supposed to be a star-shaped domain around 
some 'zero' field (each point may be linked to zero by straight lines). Spaces of this 
kind are called 'affine' spaces by some authors (Singer 1981). Some important field 
spaces are not affine. For example, the space of metrics used in general relativity 
includes no zero; nor does the space of chiral fields with values on a Lie group. For 
such cases, to be examined later, the use of (4.2) is far from immediate. 

The important local expression we have announced states that, for affine functional 
spaces, Z can always be written as 

Z = S ( T Z ) + T ( S Z ) .  (4.3) 

This result may be obtained from (4.2) by direct verification. A consequence is that 
a closed 2 will be locally exact, Z = 6(  T Z ) .  For a closed Euler Form E, this gives 
immediately the Lagrangian 2' = TE, the expression (4.2) reducing to Vainberg's 
homotopy formula (Atherton and Homsy 1975, Finlayson 1972). Equation (4.3) allows 
a systematic identification of those pieces of a given E which are Lagrangian derivable 
and those which are not. This was done directly in (3.7) but (4.3) may be useful in 
more complicated cases. No term in (3.8) is Lagrangian derivable, since there 

TSE = E STE = 0.  (4.4) 

If the first term in (3.6) is dropped and the remaining give through (4.2) the Helmholtz- 
Korteweg Lagrangian 

2' = p a , d  - - t p ( a p , ) ( a ~ ) .  (4.5) 

2' = fcpcp,, + fcpcp,cp,, + tcpcpox,,. 

For (3.9), the Lagrangian is immediately obtained 

(4.6) 

A trivial rule to obtain 2' from E = 82' = E,Scp" is obtained when E, is a polynomial 
in the fields and/or their derivatives: we replace in E S p a  by cp" and divide each 
monomial of the resulting polynomial by the respective number of fields (and/or their 
derivatives). A simple example of the use of (4.2) in a non-polynomial theory may be 
found in Born-Infeld electrodynamics (Born and Infeld 1934). With FcLy = a,A, -&A, 
and F2= Fp,Fp", its Euler Form is 

E = a p  ( ( 1  - A i k ) " 2  ) SA". 

In this case 

(4.7) 

gives, after integration and a convenient antisymmetrisation, 

2'= k[( 1 - F2/2k)'I2 - 13.  (4.8) 
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It is sometimes possible, by a clever picking u p  of terms, to exhibit the Euler Form 
directly as an  exact Form, threby showing the existence and the form of a Lagrangian. 
Take for Einstein’s equations for the pure gravitational field the Euler Form 

E = ( - g ) ” ’ [  R, ,  -;g,”( R + A ) ] S g P ”  (4.9) 

for a cosmological constant A .  We can recognise S ( - g ) ” ’  = - f ( g ) ” * g , , S g f i ”  in the 
second term and separate 6 R  = Sgp”R,,  + g,,SR,, to write E = 
a [ ( - g ) ” ’ ( R  + A ) ]  - ( -g)”2g,vSR,u.  Of these two terms, the latter is known to be a 
divergence (Landau and Lifshitz 1975) and the first exhibits the Hilbert-Einstein 
Lagrangian. The factor ( -g) ” ’  is to be expected if we recall the implicit integration 
in (4.9). It plays the role of an  integrating factor, as E would be neither invariant nor 
closed in its absence. 

5. Gauge fields 

The Euler Form for sourceless gauge fields is 

E = (J /”F” , ,+  f “bCAblJFrpy)SAaV= (DwFaPv)SAa” .  (5.1) 

The coefficient, whose vanishing gives the Yang-Mills equations, is the covariant 
derivative of the curvature F of the connection A in this same connection. Each 
component A“, is a variable labelled by the double index ( a ,  p )  and f a b r  are the gauge 
group structure constants. Taking the differential 

( 5 . 2 )  SE = (alJSFa,, + f abcAbpSFr,, + f ahcSAb”FC,,.) A SA,”. 

The last term vanishes if we use the complete antisymmetry (or cyclic symmetry) of 
f ‘ b c :  the coefficients become symmetric under the change ( a ,  v ) e ( b ,  p ) .  Integrating 
by parts the first term, using again the cyclic symmetry and conveniently antisymmetris- 
ing in (p ,  v), we arrive at 

SE = -‘SF” p” A SFapu = 0. (5 .3)  

The cyclic symmetry used above holds for semisimple groups, for which the Cartan- 
Killing form is an invariant metric well defined on the group. We have been using 
such a metric to raise and lower indices since equation ( 5 . 1 ) .  That no Lagrangian 
exists in the non-semisimple case has been shown first in the particular case of the 
PoincarC group (Aldrovandi and Pereira 1986) and then in the general case (Aldrovandi 
and Pereira 1985) by using the Helmholz-Vainberg theorem. In the semisimple case, 
(4.2) can be used to obtain 

2’ = i A a ” D F F a , ,  = -~FolJYFa,U.  (5.4) 

The space Z of the A is star-shaped (Singer 1981), so that the integration to get 2 is 
straightforward, 2’ being valid on the whole Z as far as no subsidiary condition is 
imposed. Of course this is not the physical space, which is far more complicated (Wu 
and Zee 1985). Given the ‘large group’ r, the infinite group formed by all the gauge 
transformations on spacetime, the physical space is formed by the gauge-inequivalent 
points of Z, the quotient space Z/r. Variations on Z may be locally decomposed into 
a part ‘along’ r and a part ‘orthogonal’ to r: 

SA,” = 6 ’  Aa” + S’A,”. ( 5 . 5 )  
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The part 611 parallel to r is a gauge transformation. Defined on Z there are entities 
which act as representatives of the geometrical entities defined on the gauge group G. 
Such representatives are, however, dependent on the point in spacetime. The group 
parameters q", in terms of which an element of G is written g = exp( q"T,) in some 
representation generated by ( T"), become fields q"(x) .  The canonical Maurer-Cartan 
1-forms w = g-' d g  on G, written w = w"J, if (J , )  is the basis generating the adjoint 
representation and satisfying the equations dw = -U A w, are likewise represented by 
fields R(x) = g-'(x)6I1g(x), 1-Forms on r, whose expression is enough to ensure that 
R satisfies a functional version of the Maurer-Cartan equations, 

6"R = -a A (5 .6a)  

or 

6"R" = -tf"b,Rb A a'. (5 .6b )  

The components R" or the matrix R, = R"(J,), - R a j f ' ,  are alternatively used when 
more convenient, the same holding for A,, F,,, 6A,, etc. 

Gauge subsidiary conditions correspond to 1-Forms along r. Take, for example, 
the one-dimensional Abelian case of electromagnetism, for which the Maxwell Euler 
Form is 

E = (d"F,,,)SA". ( 5 . 7 )  
As 6A" = 6"A" + 6'A" and 6I1A" = d"8q for some parameter field q, an integration by 
parts shows that the contribution along r vanishes. The Lorentz gauge condition is 
specified by the 1-Form 

( 5 . 8 )  
The complete Euler Form governing electromagnetism in the Lorentz gauge is con- 
sequently 

H = h(aGA,)6q = - h A , J p S ~  = -AA,S"A'". 

E* = (~ ,F , , )S 'A"  - $ A s ~ ~ ( A , A ~ ) .  (5 .9 )  

H is an exact Form only along r so that we cannot say that T H  = - iA(A,Ap)  is a 
Lagrangian in the usual sense. 

The above considerations can be transposed without much ado to the non-Abelian 
case. Putting 8A," = D"6q" + S'A," in (5.1), the contribution along the group vanishes 
again. The Lorentz Form is now 

H = A ( a p A " , ) S ~ a  = -AA",(DFSq, -[A',  8 7 ] , ) =  -AAQ,6"Ao@ 

= - ~ A ~ " ( A ~ , A , @ ) .  

Supposing a convenient normalisation for the Cartan-Killing metric we have been 
using implicitly, the total Euler Form may be written 

E" = tr[DsF,,6'A" - ~ A 6 1 ' ( A , A p ) ] .  (5.10) 
We have used, for the sector along r, the holonomic (or 'coordinate') basis  ST^}, 
composed of exact Forms. We could likewise have used a non-holonomic basis. With 
differential forms the choice of basis is in general dictated by the symmetry of the 
problem. For 1-Forms along r, a very convenient basis is formed by the Maurer-Cartan 
Forms {a,}. On the space X, such Forms are dual to the 'vector fields' 

(5.11) 
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which represent (Faddeev and Shatashvilli 1984) the generators of gauge transforma- 
tions on Z. As a= g-'Sg = g- '(Sv)g, a 1-Form G = G,R" is related to K = K,S7" 
simply by G =g- 'Kg.  Now in the basis {a'}, S"=Cl"T, on 0-Forms, so that, for 
example, 

- -flaD,+Ea" = O  (5.12) SI'S = - a , D ,  - - 

with Eap = DuFapy. This expresses the invariance of S (or of the Lagrangian) under 
gauge transformations. We can otherwise integrate by parts to obtain 

SS 

SA,, 

0 = S'IS = (0,SZ") E," = S 'A",E," (5.13) 

which again says that the equation is 'orthogonal' to r. 

the anholonomic basis {Cl , }  
The expressions for the gauge anomalies are components of 1-Forms along r in 

U =  u,w. (5.14) 

Using (5.6b), we find 

8 "  U = +[ T, - Tbu, - U, f ' a b ] a a  A ab. (5.15) 

We recognise inside the brackets the expression whose vanishing gives the Wess- 
Zumino consistency condition, which in this language becomes simply 

S'IU=O. (5.16) 

Again, U must be locally an exact Form, but only along r, so that TU is not a 
Lagrangian. 

Notice that, unlike the case of S in (5.12), the last equation does not express the 
invariance of U under gauge transformations. Only when acting on 0-Forms does SI1 
represent gauge transformations. The situation is again analogous to differential 
geometry, where transformations are represented by Lie derivatives. Let us consider 
on Z objects analogous to the vector fields on manifolds; e.g., entities such as (5.11) 
or more generally such as 7 = v"T, or X = X"S /Sq" .  Transformations on Forms will 
be given by the Lie derivatives Lx = 8 0 ix + ix  0 6, where ix is the interior product and 
the symbol 0 stands for composition. For 0-Forms, only the last term remains, but for 
U the first will also contribute. The invariance of a Form W under a transformation 
whose generator is represented by a 'Killing field' X will be expressed by Lx W = 0. 
In the case of an Euler Form coming from a Lagrangian, E = SS, the commutativity 
between the Lie derivative and the differential operator leads to LxE = SLxS, a well 
known result: the invariance of S( LxS = 0) implies the invariance of E (  = 0) but 
not vice versa. The invariance of E only implies the closedness of LxS and the 
equations may have symmetries which are not in the Lagrangian (Okubo 1980). 

A final remark concerning gauge fields: we have already used $'A," = D"67,. A," 
being a 0-Form, this measures to first order its change under a group transformation 
given by g(x) = exp(-v(x)) - 1 - ST(X). Using a= g-'(ST)g, we can write 

S ~ A '  = DF'R. (5.17) 

A fermionic field will transform according to S"V' = STV' = g - ' a g 9 ' ,  or 

SllV =a*. (5.18) 
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Together with (5.6a), the two last equations express the BRST transformations (Stora 
1984, Baulieu 1984), provided the Maurer-Cartan Form R is interpreted as the ghost 
field (Stora 1984, Leinaas and  Olaussen 1982) and  Slavnov's operator is recognised as 
6'l. The well known use of 6l' to obtain topological results (Mafies er a1 1985) is a fine 
illustration of the convenience of variational Forms to treat global properties in 
functional spaces although it remains, to our knowledge, the only such application so 
far reported. 

6. Chiral fields 

We shall finish with a few comments on pure chiral fields, here understood simply as 
the group-valued fields g(x) encountered above. The functional space reduces to r 
and 6 will coincide with the previous SI'. Neither G nor r are star-shaped spaces, so 
that we must work with tensor fields on the Lie algebra and  their functional counterparts. 
A variation of the Maurer-Cartan form U, = g-' d,g is the covariant derivative of its 
corresponding Form: 

6 ~ ,  = - f ' (  Sg)g-'d,g + g-'d, (gg - ' 6g) = d, R + [U, ,  R] = 0, R. (6.1 ) 
To obtain the Euler Form corresponding to the two-derivative contribution to the 
chiral-fields dynamics we start from the usual action 

S = -f tr(w,w,) (6.2) 
from which 

E = SS = -tr(w,6ww) = -tr[w,(dpfl+[ww, RI)] 

= -tr(o,dwR) = tr[(dWw,)R] 

= tr[d,(g-'d,g)g-'dg]. 

The existence of a Lagrangian here is a consequence of the functional Maurer-Cartan 
equation (5.6). In effect, 

SE = 6[(d,w,') f i" ]  = hap A awna + ( d , ~ , ~ ) ) s l 2 "  

= -(d,R" + f o h c W h w f l c )  h d , n a  +d,U,")6fla 

= ( d , U , f i ) ( 6 f i " + f f a b , f l b  A a') =o.  
The presence of R in the trace argument in (6.3) would not be evident from the field 
equation 

ayg-'d,g) =o. (6.5) 
The variation was entirely made in terms of U, and R, which belong to star-shaped 
spaces, and  not in terms of g(x). We can consequently follow the inverse way: put 
(6.4) in the form E = -tr(w,6wp) and only then use (4.2) to recover (6.2). This is 
trivial but instructive for the discussion of the five-meson vertex. Let us examine the 
field equation (Witten 1983): 

awUw + A E ~ ~ ~ ~ U , W , W ~ W ,  = 0. 

The natural extension of (6.3) is the Euler Form 
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which is a Form ‘along’ 0. To find the Lagrangian for the second term we have to 
write it in a holonomic basis while remaining in an  affine space. We can then use the 
group parameter field ~ ( x ) ,  such that U, = g- ’ (d,q)g and in terms of which the term 
is A E ’ ” ~ ~  tr(d,r@uTd,Tdu$T). The use of (4.2) leads immediately to 

This has the form of Witten’s action. The local considerations above can only give 
the relative numerical factor between the equation and the Lagrangian. 

7. Final comments 

We have shown, through many examples, the power of exterior variational calculus 
in treating some involved aspects of field theories in a very economical way. All cases 
examined were ‘local’, i.e. valid in some open set of the field space. Recent years have 
witnessed an  ever growing interest in the global, topological properties of such spaces. 
Anomalies, BRST symmetry and other peculiarities are now firmly believed to be related 
to the cohomology of the field functional spaces involved, this belief coming precisely 
from results obtained through the use of some special variational differential techniques. 
Many global properties of finite-dimensional manifolds are fairly understood and 
transparently presented in the language of exterior differential forms. The complete 
analogy of the infinite-dimensional calculus suggest that, besides being of local interest, 
it is the natural language in which to examine global properties of field spaces. 
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